Series solutions of Heun-type equation in terms of orthogonal polynomials

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Solutions of the Heun Equation

We review properties of certain types of polynomial solutions of the Heun equation. Two aspects are particularly concerned, the interlacing property of spectral and Stieltjes polynomials in the case of real roots of these polynomials and asymptotic root distribution when complex roots are present.

متن کامل

The 192 solutions of the Heun equation

A machine-generated list of 192 local solutions of the Heun equation is given. They are analogous to Kummer’s 24 solutions of the Gauss hypergeometric equation, since the two equations are canonical Fuchsian differential equations on the Riemann sphere with four and three singular points, respectively. Tabulation is facilitated by the identification of the automorphism group of the equation wit...

متن کامل

Roots of Polynomials Expressed in Terms of Orthogonal Polynomials

A technique is presented for determining the roots of a polynomial p(x) that is expressed in terms of an expansion in orthogonal polynomials. The roots are expressed as the eigenvalues of a nonstandard companion matrix Bn whose coefficients depend on the recurrence formula for the orthogonal polynomials, and on the coefficients of the orthogonal expansion. Some questions on the numerical stabil...

متن کامل

Fourier Series of Orthogonal Polynomials

It follows from Bateman [4] page 213 after setting = 1 2 . It can also be found with slight modi cation in Bateman [5] page122. However we are not aware of any reference where explicit formulas for the Fourier coef cients for Gegenbauer, Jacobi, Laguerre and Hermite polynomials can be found. In this article we use known formulas for the connection coef cients relating an arbitrary orthogonal po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2018

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.5045341